Skip to main content
头部广告图片
  考试学习首页 > 小升初

GMAT数学│排列组合数学考点总结及案例分析

2023-07-25 浏览:

排列组合是我们GMAT考试中数学板块的重要考点之一,虽然是这个知识点是高中学过的,但是知道我们学员一定有所遗忘,因此今天就特地帮大家复习一下。

排列组合数学题型

首先我们把GMAT排列组合数学题型分为两类:可“区分”的叫做排列 abc P33;不可“区分”的叫做组合 aaa C33。用下列步骤来作一切的排列组合题:

(1)先考虑是否要分情况考虑

(2)先计算有限制或数目多的字母,再计算无限制,数目少的字母

(3)在计算中永远先考虑组合:先分配,再如何排(先取再排

打开凤凰新闻,查看更多高清图片

例子:

8封相同的信,扔进4个不同的邮筒,要求每个邮筒至少有一封信,问有多少种扔法?

第一步:需要分类考虑(5个情况)既然信是一样的,邮筒不一样,则只考虑4个不同邮筒会出现信的可能性。

第二步:计算数目多或者限制多的字母,由于信一样就不考虑信而考虑邮筒,从下面的几个情况几列式看出每次都从限制多的条件开始作。先选择,再考虑排列。

5个情况如下:

a. 5 1 1 1:4个邮筒中取一个邮筒放5封信其余的3个各放一个的分法:C(4,1)=4

b.4 2 1 1:同上,一个邮筒4封信,其余三个中间一个有两封,两个有一封:C(4,1) * C(3,1)=12

c. 3 3 1 1: C(4,2) =6

d. 3 2 2 1: C(4,1) * C(3,2) = 12

e. 2 2 2 2 :1

4+12+6+12+1=35种放法

两个基本计数原理及应用

(1)加法原理和分类计数法

1.加法原理

2.加法原理的集合形式

3.分类的要求

每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

(2)乘法原理和分步计数法

1.乘法原理

2.合理分步的要求

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

接下来大家实战训练一下

1.明确任务的意义

例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。

分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。

设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定,

又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为180。

2.分类/分步,排列/组合

例2. 在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。

分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。

第一类:A在第一垄,B有3种选择;

第二类:A在第二垄,B有2种选择;

第三类:A在第三垄,B有1种选择,

同理A、B位置互换 ,共12种。

3.特殊元素与特殊位置,优先处理考虑

例3.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?

分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。

第一步:第五次测试的有C(4,1)种可能;(意思就是四个次品里面任何一个都有可能是第五次测试到的)

第二步:前四次有一件正品有C(6,1)种可能。(一起有四个次品~要保证第五次测出全部次品切第五次测出次品,那么前四次里面就有一次会抽到正品。正品有6个,任何一个都有可能抽到~~)

第三步:前四次有A(4,4)种可能。(除了最后一次必须是次品以外,前面四位数是什么顺序是随便的,所以他们有4*3*2*1种方法排)

∴ 共有4*6*4*3*2*1=576种可能。

正题思路就是把第五次确定咯~先组合他们再排列他们~~~~但是注意这里是相乘因为他们要一起做才能完成~~~也就是他们只是任务的一个步骤~~~

4.间接计数法-排除法

例4. 三行三列共九个点,以这些点为顶点可组成多少个三角形?

分析:有些问题正面求解有一定困难,可以采用间接法。

所求问题的方法数= 任意三个点的组合数—共线三点的方法数,即C(9,3)— 8

∴ 共76种。

5.挡板的使用

例5.将10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?

分析:把10个名额看成十个元素,在这十个元素之间形成的九个空。(大家发挥想象,电影院十个并排椅子中间有9个间隔)九个空中选出七个位置放置档板(在电影院椅子间放块板把两个椅子隔开),则每一种放置方式就相当于一种分配方式。因而共C(9,7)=36种。

6.分组问题

例6. 将5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有多少种?

分析:(一)先把5个学生分成二人,一人,一人,一人各一组。

其中涉及到平均分成四组,有C(5,3)=10种分组方法。可以看成4个板三个板不空的隔板法。

(二)再考虑分配到四个不同的科技小组,有A(4,4)=24种。

由(一)(二)可知,共10×24=240种。