Skip to main content
头部广告图片
  考试学习首页 > 小升初

人教版五年级数学上册教案(四)

2023-08-01 浏览:

第四单元:可能性 教材分析可能性是学习数学四个领域中“统计与概率”中的一部分,“统计与概率”中的统计初步知识学生在之前的学习已经涉及,但概率知识对于学生而言还是一个全新的概念,它是学生以后学习有关知识的基础。本单元主要教学内容是事件发生的不确定性和可能性,并能知道事件发生的可能性是有大小的。教学关键是如何让学生把对“随机现象”的丰富的感性认识升华到理性认识。学情分析五年级学生已经具备了一定的生活经验和统计知识,对现实生活中的确定现象和不确定现象已经有了初步的了解,并有一定的简单分析和判断能力,但学生只是初步的感知这种不确定事件,对具体的概念还没有深入地理解和运用。根据学生的年龄特点和生活经验,教师做出适当引导,学生就会进行正确的分析和判断的。所以教材选用学生熟悉的现实情境引入学习内容,设计了多种不同层次的、有趣的活动和游戏,激发了学生的学习兴趣,使其感受到数学就在自己的身边,体会数学学习与现实的联系,为学生自主探索、合作学习创造机会。教学中,教师要利用这些情境让学生积极地参与到学习活动中,让学生在具体的操作活动中进行独立思考,使学生在大量观察、猜测、试验与交流的过程中,经历知识的形成过程,逐步丰富对不确定现象及可能性大小的体验。教学目标 知识技能:使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的。能列出简单试验所有可能发生的结果,知道事件发生的可能性的大小。数学思考:培养学生简单的逻辑推理、逆向思维和与人交流思考过程的能力。问题解决:能由一些简单事件发生的可能性大小逆推比较事件多少。情感态度:通过本单元的学习使学生感受到生活中处处有数学,并能够运用可能性的知识解决生活中的问题,逐渐对统计与可能性知识产生兴趣,培养学生学习数学的兴趣。教学重点:会用“可能”“不可能”“一定”描述事件发生的可能性。能够列出简单试验中所有可能发生的结果,知道可能性是有大小的。教学难点:能根据可能性的大小判断物体数量的多少。课时安排:3课时1.可能性………………………………2课时2.掷一掷………………………………1课时 课题: 第四单元:可能性(1) 第 1 课时 总序第 1 个教案课型: 新授 教学内容:教材P44例1及教材练习十一第1、2、3、4题。教学目标:知识与技能:学生初步体验有些事件发生是确定的,有些则是不确定的。过程与方法:学生通过亲身体验,在观察、交流、动手、思考、验证的过程中探索新知。情感、态度与价值观:培养学生的表达能力和逻辑推理能力。教学重点:体验事件发生的等可能性。教学难点:会用“可能”、“不可能”正确地描述事件发生的可能性。教学方法:采用游戏教学法,将教学情境真实地搬到现实生活当中,让学生在游戏中,真实地参与中积累与学习知识。教学准备:师:多媒体、抽签卡纸、盒子、彩色球、铅笔。生:棋子。教学过程一、情境引入1.导入:今天老师给大家带来一个小小的礼物,猜一猜是什么?让学生猜一猜,学生猜可能是文具,可能是玩具,可能是书….2.师揭题:学生说的这些都是有可能发生的事情,在数学上都是些不确定性事件。这节课我们就来研究事件发生的可能性。(板书课题:可能性)3.出示谜语:小黑人儿细又长,穿着木头花衣裳。画画写字它全会,就是不会把歌唱。学生可能会说:铅笔。师追问:确定吗?让学生肯定回答一定是铅笔或确定是铅笔。4.出示奖品铅笔,并说明这是奖励表现最优秀的学生的,希望大家都能努力。二、互动新授1.引入:下周班会,老师想组织大家表演节目,每个人都有机会表演。但节目形式不能重复,每个类型只能有一个节目,大家讨论一下,我们应该怎样确定每一个同学演什么节目呢?组织小组讨论,大部分同学会想到用抽签的方法来决定。2.活动:出示三张卡片,上面分别写上唱歌、跳舞、朗诵,找同学上来抽一张,引导学生先思考一下,会抽到什么?学生会想到:可能是唱歌,可能是跳舞,也可能是朗诵。这三种情况都有可能。师小结:每位同学表演节目类型是一件不确定的事件,有三种可能的结果。3.抽签指生抽一张。(以抽到跳舞为例)师引导:如果再找一名同学来抽签,可能会抽到什么?生可能回答:可能是唱歌,也可能是朗诵。引导学生质疑:有没有可能会抽到跳舞?指生回答:不可能,因为剩的两张签里没有跳舞。找生抽一张,验证学生的猜测是否正确。(以学生抽到的是朗诵为例)4.引导:最后只剩一张了,你们能猜一猜这一张可能是什么吗?生可能会回答:一定是朗诵,因为只剩下朗诵这张卡片了。5.师小结:刚才在猜测会抽到什么节目时,第一次同学们用的词是“可能”,第二次同学们用的词是“不可能”,第三次用的是“一定”。一般事情的发生都有“可能”“不可能”“一定”三种情况,当然,不同情况下,它们有时也会发生变化。(板书:可能不可能 一定)三、巩固拓展1.完成教材第45页“做一做”。出示:两个盒子,一号盒子放的全部是红棋子,二号盒子放的有红棋子和绿棋子。引导学生先说一说,哪个盒子里一定能摸出红棋子?哪个盒子里可能会摸出绿棋子?哪个盒子里不可能摸出绿棋子?等问题。让学生在小组内组织摸一摸活动,并验证,再集体汇报。2.完成教材第47页“练习十一”第1题。让学生说一说,并说明理由。3.完成教材第47页“练习十一”第2题。先让学生自主连一连,教师发彩色球让学生验证摸一摸,再说一说为什么这么连。4.说一说:教师引导学生用“一定”“可能”“不可能”等词语说说自己生活中一些事件发生的可能性。四、课堂小结师:这节课你们学了什么知识?有什么收获?引导归纳:1.判断事件发生的可能性的几种情况:可能、不可能、一定。2.能结合实际情况对一些事件进行判断。其中“不可能”和“一定”是能够在完全确定的情况下做出的判断,而“可能”是在不能确定的情况下做出的判断,它通常包含经常、偶尔两种情况。作业:教材练习第47页第3、4题。 板书设计:可能性(1)可能(不能确定)可能性 不可能(完全确定)一定 课题: 第四单元:可能性(2) 第 2 课时 总序第 2 个教案课型: 新授 教学内容:教材P45~46例2、例3及练习十一第5、8题。教学目标:知识与技能:让学生知道事件发生的可能性是有大小的。过程与方法:进一步学习比较多种结果事件可能性的大小方法:先得出结果总数,再看哪种结果在总数占的比例多。情感、态度与价值观:培养学生的动手操作、归纳和判断能力。教学重点:会比较两种结果事件的可能性大小。教学难点:能根据可能性的大小逆向思考比较事件数量的多少。教学方法:游戏教学法;自主探索、合作交流。教学准备:多媒体、盒子、彩色棋子。教学过程一、复习引入1.出示:(1)用合适的语言描述下面事件发生的可能性。①太阳( )从东边落下。②明天( )考试。③冬天( )会下雪。 ④掷一枚硬币( )正面朝上。(2)盒子里有3个红棋子和1个黄棋子,任意摸一个可能是什么颜色的棋子?为什么?引导学生说出,可能是红棋子也可能是黄棋子。因为盒子里面既有红色棋子也有黄色棋子。质疑:你觉得摸到哪种颜色的棋子最有可能呢?为什么?引导学生思考,在小组内交流讨论。学生可能会说,红色棋子摸到最有可能,因为盒子里红棋子比黄棋子多。2.导出课题:看来事件发生的可能性是有大有小的。今天这节课咱们就来研究事件发生的可能性的大小。(板书课题:可能性的大小)二、互动新授1.体验可能性有大有小。出示教材第45页例2情境图。(1)引导:在盒子里有红色和蓝色两种棋子,任意摸出一个棋子,可能是什么颜色?(可能是红色,也可能是蓝色。)(2)(继续出示情境图做实验部分)有一个小组做了一次实验,他们摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次,同学们观察他们摸完20次后的结果是怎样的?(摸出红色的多,蓝色的少。)(3)追问:这说明了什么?(摸到红棋子的可能性比较大,蓝棋子的可能性小。)(4)质疑:假如再摸一次的话,摸出哪种颜色棋子的可能性大?(红色),那是不是一定能摸到红色呢?(不一定,因为蓝色摸到的可能性虽小也有可能会摸到。)2.动手操作。(1)每个小组都有一个盒子,里面都装有红色和蓝色两种棋子,请小组仿照教材的实验,自己摸一摸,并由小组长记录结果。小组操作结束后,汇报记录结果,并根据结果说一说你盒子里哪种颜色的棋子多。并追问:每个小组的统计结果都一样吗?指名小组汇报,对不同结果的小组进行比较。(2)引导学生思考:通过刚才的操作,你发现可能性的大小与什么有关?引导学生小结:与在总数中所占数量的多少有关,在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。(板书)(3)让学生举出生活中的例子:如抽奖、买彩票等。并由此对学生进行正确的思想教育。3.出示教材第46页例3。(1)先让学生观察出示的记录结果,再指名回答例题中的问题。(从试验记录可以看出,一组摸了20次,摸出黄球5次,摸出红球15次,摸出黄球的次数少于红球的次数。另一组摸了20次,摸出黄球 4次,摸出红球16次,摸出黄球的次数少于摸出红球的次数。八个小组一共摸到红球123次,摸到黄球37次,摸到红球的次数比摸到黄球的次数多。也就是说,从盒子里摸出红球的可能性大在,黄球的可能性小。因此,我们可以判断出:盒子里红球多,黄球少)(2)引导小结方法:当可能性的大小与数量相关时,在总数中所占数量越多,可能性越大,所占数量越少,可能性就越小。三、巩固拓展1.完成教材第45页“做一做”。先让学生自主思考,小组交流,再汇报。并说出为什么这么想。引导学生总结:在总数中占的颜色多的可能性大,占的颜色少的可能性小。可以进一步渗透“公平”的思想与画法。2.完成教材第46页“做一做”第1题。先让学生观察从图中能得到的信息,再说一说。(盒子里红色的棋子多,黄色的棋子少)引导学生运用可能性大小的逆向思考:从可能性的大小可以推想数量的多少吗?(让学生动手操作,小组合作,并记录结果。)四、拓展小结师:这节课你们学了什么知识?有什么收获?引导归纳:1.事件发生的可能性有大有小。2.在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。3.摸到的可能性大的说明在总数中占的数量多,摸到的可能性小的说明在总数中占的数量少。作业:教材练习第47~48页练习十一第5、8题。 板书设计:可能性(2)大←→数量多可能性小←→数量少 课题: 第四单元:可能性—掷一掷 第 1 课时 总序第 3 个教案课型: 活动 教学内容:教材P50~51及P48~49练习十一第6、7、9、10、11题。教学目标:知识与技能:使学生通过猜想、实验、验证的过程,巩固“组合”的有关知识,探讨事件发生的可能性大小。过程与方法:通过活动,使学生初步获得一些数学活动的经验,经历“猜想、实验、验证”的过程,引导学生在活动中发现问题,分析问题,体会到数学在生活中的应用。情感、态度与价值观:结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。教学重点:探索两个骰子点数之和在5、6、7、8、9居多的原理。教学难点:让学生在“玩”中获得数学知识,在学中感受数学的趣味。教学方法:创设情境;小组合作、实践操作。教学准备:多媒体、骰子。教学过程一、创设情境,引入新课出示骰子,师问:同学们见过骰子吗?你们在哪见过?它和数学有什么联系?(学生可能回答:在打麻将时、玩具上见过;骰子上有6个数字。)学生回答后,师引导:这节课我们就来掷一掷骰子,通过游戏一起探究骰子里面还有哪些数学知识。二、师生互动,探究新知1.思考:如果同时掷出两颗骰子,它们出现的点数之和会有哪一些7根据学生的回答板书:2、3、4、5……12。追问:可能有1和13吗?为什么?学生自主思考,通过组合知识得出结论。(不可能,因为两个数的和最小是2最大是12。)2.游戏探究。规则:把这11种结果分成两组:A组:1、2、3、4、10、11,B组:5、6、7、8、9。一共掷20次,总次数多者为胜。(l)选择一组结果与教师进行比赛。(2)两个小组为一个单位比赛,自由选择结果组别,4人轮流掷骰子,由组长记录试验数据,最后比较实验数据,分出胜负。学生操作时,组员轮流掷骰子,组长负责填写数据。掷骰子时要注意先在手中晃几下再投入杯子中。3.汇报比赛数据和结论,师汇总并引导学生比较总结。比较发现:两数和为5~9出现的次数较多,说明B组获胜的可能性大。引导思考:为什么会这样?引导学生通过观察两数和的统计表,并通过举例说明:如和是6的情况:1+5,2+4,3+3三种情况;和是2只有1+1这一种情况。比较总结:和是7出现的次数最多,和是5、6、8、9出现的次数比较多,和是2、3、4、10、11、12出现的次数比较少。三、指导练习1.教材第47页练习十一第9题。教师引导学生提出猜想,再组织全体不生参与演示,完成表格,验证猜想。2.完成教材第49页练习十一第10题。组织学生理解题目信息,让学生独立思考作答,小组订正。3.完成教材第49页练习十一第11题。(1)引导学生理解题意。小组内合作完成,集体订正。(2)组织学生设计卡片,鼓励方案多样化。四、拓展延伸1.根据客观事实判断事件发生的确定性和不确定性。出示:明天的篮球比赛,我们班一定会赢。这种说法正确吗?思路引导:篮球比赛的结果有两种可能:一种是我们班赢,另一种是我们班输。也就是说,我们班可能会赢。这个结果不是按照我们班同学的意愿而实现的。规范答案:这种说法不正确。明天的篮球比赛,我们班可能会赢。教师小结:生活中事件发生的确定性和不确定性要根据客观事实进行判断,与个人的意愿无关。2.根据图形区域大小判断可能性的大小下面是百草园文具店的投资活动规则,看图想一想,抽到哪种奖品的可能性大?抽到哪种奖品的可能性小?(满100元抽奖一次)指针所在区域奖品红色区域一个文具盒黄色区域一个笔记本绿色区域一支铅笔

第五单元:简易方程

教材分析

本单元主要学习的是用字母表示数、运算定律、计算公式和数量关系,学习方程的意义、等式的基本性质和解简易方程,以及在解决一些实际问题中简易方程的运用。在学生已有的算术和代数知识的基础上学习简易方程,有助于培养学生的抽象概括能力,发展他们思维的灵活性,并且能够巩固和加深所学的算术知识。

学情分析

用字母表示数,对小学生来说比较抽象,学生理解起来会有一定的难度。特别是用含有字母的式子来表示数量关系,更让学生感到困难。让学生从具体的、确定的数过度到用字母表示抽象的、可变的数,对学生来说是认识上的一个飞跃。因此在教学中,教师要充分利用学生原有的相关认识基础,使学生从具体实例到一般意义的抽象概括逐渐过渡。

学生在学习这部分内容时,往往不会将含有字母的式子看作是一个量,如:苹果2元一斤,香蕉比苹果贵x元,2+x 既表示苹果价格与香蕉价格之间的数量关系,也表示香蕉的价格,很多学生认为这只是一个式子,不是结果。而这正是学生学习简易方程的基础,所以要先学习用字母表示一个特定的数,再学习用字母表示一般的数,也就是用字母表示运算定律和计算公式,让学生有了一定的基础后,再学习用含字母的式子表示数量和数量关系,这样由易到难,便于学生在数学认知上有更高的飞跃。

教学目标

知识技能:使学生初步认识用字母表示数的意义和作用,能用字母表示运算定律和计算公式等,初步了解简易方程,能用等式的性质解简易方程。

数学思考:培养学生根据具体情况,灵活选择算法的意识和能力。

问题解决:能列简易方程来解决生活中的实际问题。

情感态度:使学生感受到数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。

教学重点:用含有字母的式子表示数量关系,等式的基本性质,解方程,培养学生书写规范和自觉检验的习惯。

教学难点:用含有字母的式子表示数量关系,列方程解决实际问题

课时安排:20课时

1.用字母表示数……………………………6课时

2.解简易方程………………………………12课时

3.整理和复习………………………………2课时

课题: 第五单元:简易方程—用字母表示数

教学内容:教材P52~53例1、例2及练习十二第1、3、7、8题。

教学目标:

知识与技能:理解用字母表示数的意义和作用。

过程与方法:能正确掌握含有字母的乘法式子的简写。

情感、态度与价值观:在探索现实生活数量关系的过程中,体验用字母表示数的简明性。

教学重点:理解用字母表示数的意义和作用。

教学难点:掌握含有字母的乘法式子的简写。

教学方法:观察、比较、思考、交流

教学准备:多媒体。

教学过程

一、情境导入

1.导入:你今年几岁了?再过两年呢?再过三年、四年、n年呢?

学生回答自己的年龄,根据教师的问题回答:过几年就用年龄十几,n年就加n。

2.质疑:这里的n表示的是什么?(一个数)

3.揭题:今天咱们就来研究用字母表示数。(板书课题:用字母表示数)

二、互动新授

(一)教学用含字母的式子表示数量关系。

1.出示教材第52页例1。

引导:图中小红和爸爸也在探讨年龄的问题,从中你了解了哪些信息?

学生可能回答:小红1岁时爸爸31岁;爸爸比小红大30岁。

2.让学生尝试用算式表示爸爸的年龄。

出示教材第52页的表格,引导学生列式表示爸爸的年龄,并集体完成表格。

3.质疑:这些式子,每个只能表示某一年爸爸的年龄。你能用一个式子简明地表示出任何一年爸爸的年龄吗?

通过表格,学生能很快列出式子:小红的年龄+30=爸爸的年龄

追问:“小红的年龄”写起来有些麻烦,谁能想个办法让我们的书写更简便?

小组交流讨论,有些学生可能会想到用“小红”“红”代替小红的年龄,也有些学生可能会想到用一个字母或一个符号来代替。

4.重点引导学生用字母来代替。

引导学生说一说你是怎么写的?为什么这样写?

学生可能用n+ 30表示,n表示小红的年龄,n+30就表示爸爸的年龄;也有可能用a+30,用a代表小红的年龄,因为爸爸比小红大30岁,所以用a+30就是爸爸的年龄。(根据学生的回答板书代数式)

思考:大家都用一个含有字母的式子代替上面所有的算式,既简洁又方便。这些式子中的字母n、a……都表示什么?

(都表示小红的年龄。)(板书:小红的年龄)

追问:是不是只能用这些字母表示?还能用其他字母表示吗?

引导学生理解:可以用任意字母来表示小红的年龄。

质疑:这些字母可以表示哪些数呢?能表示200吗?

先让学生讨论,然后汇报:这里的字母能表示从1开始的自然数,但是不能表示太大的数,不能表示200,因为人不可能活到200岁。

引导学生小结:用字母表示数时,在特定的情况下,字母表示的数是有一定取值范围的,比如表示年龄时。

5.质疑:这些含有字母的式子都表示什么呢?

(表示爸爸的年龄,也表示小红比爸爸小30岁。)

归纳:含有字母的式子,不但可以表示数,还可以表示两个数量之间的关系。(多媒体出示)

6.提问:如果用a表示小红的年龄,当a=11时,爸爸的年龄是多少?

学生自主计算,汇报:a+30=11+30=41(岁)

当a=12时呢?学生汇报:a+30=12+30=42(岁)

(二)教学教材第53页例2。

1.引导:同学们想不想知道月球上到底有什么秘密呢?让我们一起来瞧瞧。

(出示教材第53页例2):观察情境图,说一说你知道哪些数学信息。

学生汇报:在月球上,人能举起物体的质量是地球上的6倍;在地球上我只能举起l5kg。

你们知道为什么人在月球上能举起的物体的质量是地球上的6倍吗?

拓展:是月亮的质量小的原因,月球引力是地球的六分之一。

2.探索:在地球上能举起l千克的物体,那么在月球上能举起多少千克?在地球上能举起2千克的物体、3千克的物体,在月球上能举起多少千克呢?

出示:教材第53页的表格。

通过刚才的列式,你能用含有字母的式子表示出入在月球上能举起的质量吗?

学生自主思考,集体交流。

引导学生把人在地球上能举起的质量用字母表示(以用x 表示为例):

人在月球上能举起的质量就是x×6千克。

3.简写乘号。

直接教学:x ×6,我们可以写成6x ,中间的乘号省略不用写。在省略乘号时,一般要把数字写在字母的前面。

想一想:式子中的字母可以表示哪些数?

引导学生小结:人能举起的质量是有限的,因此字母表示的数也是有一定范围的,不能过大。

4.(出示教材第53页情境图)图中小朋友在月球上能举起的质量是多少?

学生自主解答,集体交流:6x =6×15=90(千克)

三、巩固拓展

1.完成教材第53页“做一做”。先让学生说一说长方形纸条的面积公式:长×宽。引导:此题的宽是3cm,怎样用含有字母的式子表示长方形纸条的面积?

放手让学生自主完成,列式汇报:3x 。教师提示乘号简写的注意事项。

2.完成教材第55页“练习十二”第1题。

先让学生回忆厘米、千克用什么字母表示(厘米:cm;千克:kg),再自主完成。

四、课堂小结

这节课你学会了什么知识?有哪些收获?

引导总结:

1.含有字母的式子,不但可以用字母表示数,还可以表示一个结果以及两个数量之间的关系。在特殊情况下,字母的取值是有一定范围的。

2.在省略乘号时,一般要把数字写在字母前面。

作业:教材第55页练习十二第3、7、8题。

板书设计:

用字母表示数

表示数

表示两个数量之间的关系

乘法简写:省略乘号,数字在字母前面。

课题:第五单元:用字母表示运算定律和计算公式

教学内容:教材P54及练习十二第4、5、6、10题。

教学目标:

知识与技能:使学生在旧知识的基础上,进一步认识用字母 表示运算定律和计算公式。理解一个数的平方的 含义。

过程与方法:使学生能够用语言表达运算定律和字母公式, 能够将数字代入字母公式中进行计算,培养学生的抽 象概括能力。

情感、态度与价值观:向学生渗透字母表示运算定律和公式的简单美。

教学重点:能用字母表示运算定律和公式,并能根据字母公式求值。

教学难点:理解一个数的平方的含义。

教学方法:自主探索、合作交流、尝试学习法。

教学准备:多媒体。

教学过程

一、复习导入

1.引导学生回忆:我们已经学过哪些运算定律?并让学生分别用语言叙述一下对应的运算定律的具体内容。

2.通过学生的回答,教师进行整理:学过的运算定律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律。

3.根据学生的回答出示如下表格:

加法交换律

两个数相加,交换加数的位置,它们的和不变。

加法结合律

三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

乘法交换律

两个数相乘,交换因数的位置,它们的积不变。

乘法结合律

三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

乘法分配律

两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

4.师引导思考:在叙述时有什么感受?

(比较麻烦,有时表达不清楚。)

结合学过的知识想一想怎样能变简单些?

学生会想到用字母表示数。

5.揭题:那么今天我们就来继续研究用字母表示数的相关知识。

二、互动新授

(一)教学用字母表示运算定律。

1.你能像上节课那样,用字母把这些运算定律表示出来吗?(出示运算定律表格)

为了教学统一,可以规定学生用字母a、b、c来表示数字。

先自主思考,再尝试表示。将答案写在教材第54页的表上。集体订正。

出示根据学生的回答完成的表格:

加法交换律

a+b=b+a

加法结合律

(a+b)+c=a+(b+c)

乘法交换律

ab=ba

乘法结合律

(a×b)×c=a×(b×c)

乘法分配律

(a+b)×c=a×c+b×c

2.引导学生自主学习乘号的简写。

先让学生自己看教材学习,再进行交流汇报。

明确:在含有字母的式子里,字母中间的乘号可以记作“· ”,也可以省略不写。如a×b=b×a,可以写成a·b=b·a或ab=ba。

3.引导观察比较:用文字叙述和用字母表示运算定律有什么不同?

先让学生自己说一说,再启发学生小结:用字母表示运算定律,一目了然,简明易记,也便于应用。

质疑:这里的a、b、c可以表示哪些数?

通过交流,引导学生明白:这三个字母可以分别表示我们学过的任何数。

(二)教学用字母表示计算公式。

1.出示正方形的形状,问:这是什么?(正方形)

让学生先说一说正方形的面积及周长的计算公式:面积=长×边长;周长=长×4。

引导:正方形的面积和周长也可以用字母表示,一般情况下,用S表示面积,用c表示周长,a表示边长。试着写一写用字母表示正方形的周长和面积计算公式。

让学生自己尝试写出用字母表示的公式,然后再翻书看课本是怎样表示的。

S= a2 C=4a

2.提问:你有什么疑问?(学生可能对平方的表示不理解)

明确:S=a·a可以写成a2,表示2个a相乘,读作“a的平方”,所以正方形的面积公式一般写成S= a2。

出示:32,b2,52,指名让学生读一读,并说出各表示什么意思。

(32读作3的平方,表示2个3相乘,等于9;b2读作b平方,表示2个b乘;52读作5的平方,表示2个5相乘,等于25。)

出示:边长6厘米的正方形,你能计算出这个正方形的面积和周长吗?

引导学生先说出用字母表示的计算公式,再计算:正方形面积的公式是S=a2,当a=6时,S=62=6×6=36(平方厘米)。

正方形周长的公式是C=4a,当a=6时,C=4×6=24(厘米)。

三、巩固拓展

1.完成教材第56页“练习十二”第4题。

先让学生分析信息,说一说“今天卖出多少个足球”怎么表示?(48+m)

再让学生独立计算第(2)、(3)小题,集体订正。

2.完成教材第56页“练习十二”第6题。

此题有两个容易迷惑学生的地方:a2、62及6×2、a×2。教师一定要引导学生正确区分“平方”与“2倍”:a2表示2个a相乘,即a×a;2a表示2个a相加,即a+a。

四、课堂小结

师:这节课你学会了什么知识?有哪些收获?

引导归纳:

1.用字母表示运算定律,简明易记、便于应用。

2.在含有字母的式子里,字母中间的乘号可以记作“· ”,也可以省略不写。

3.a2读作:a的平方,表示2个n相乘。

作业:教材第56~57页练习十二第5第10题。

板书设计:

用字母表示运算定律和计算公式

a×b=b×a,可以写成a·b=b·n或ab=ba。

a2读作:a的平方,表示2个a相乘。

课题:第三单元:简易方程—练习十二

教学内容:教材P55~57练习十二第2、9、11、12、13题。

教学目标:

知识与技能:

1.能熟练掌握用字母表示数的方法。

2.会利用公式、常用的数量关系求值。

过程与方法:经历用字母表示数和求值的练习过程,培养学生抽象概括的思维能力。

情感、态度与价值观:在学习活动中,感受生活中处处都有数学,体验数学知识的应用价值,培养学生解决实际问题的能力,增强学习的信心。

教学重点:能熟练地用字母表示数量关系、运算定律、计算公式。

教学难点:解决相关的实际问题。

教学方法:习题讲解,引导学生练习。在练习中体验、交流、感悟。

教学准备:多媒体。

教学过程

一、复习回顾

教师:我们已经学习了用字母表示数,那现在就来做做练习。

教师出示下列各题,学生独立思考后,交流解答。

1.填空。

(1)1千克大米的价格是a元,买20千克大米应付( )元。

(2)学校食堂上月用煤x 吨,这个月比上个月节约用煤y吨,这个月用煤( )吨。

(3)a+a=( ) a×a=( ) 当a=5时,2a=( ),a2=( ).

(4)汽车每小时行42千米,行了t小时,共行( )千米;如果行s千米要( )小时。

2.水果店购进一批水果,苹果有x箱,每箱重15千克,橘子共有a千克,说说下列式子表示的意义。

(1) 15x (2) 15x +a (3) 15x -a

二、指导练习

1.教材第57页练习十二第11题。

(1)学生读题后,教师提问:我们已经学习过的单价、数量和总价三者之间有怎样的关系?

学生在小组中议一议后,会说出:总价=单价×数量;单价=总价÷数量数量=总价÷单价

(2)你会用题中的字母表示出这些数量关系吗?

学生在教材上练习,教师指名板演:c=ax a=c-x x =c÷a

(3)如果每袋方便面1.5元,6元可以买几袋?

学生独立练习,教师指名板演:

x =c÷a=6÷1.5=4(教师注意强调书写格式)

集体订正,教师强调易错点。

2.教材第57页练习十二第13*题。

(1)教师出示图。

(2)该图由几个小长方形组成?分别说说它们的长和宽各是多少。

组织学生观察图,独立思考后在小组中交流。然后教师指名学生说一说。

学生可能会说出:左边长方形长是a,宽是c;右边长方形长是b,宽是c;整个长方形长是(a+b),宽是c。

(3)学生独立思考,小组交流讨论后,教师指名学生回答:

①哪一部分的面积是ac? (左边长方形的面积)

②哪一部分的面积是bc? (右边长方形的面积)

③整个图形的面积怎样计算?

方法一:(a+b)c 方法二:ac+bc

三、巩固练习

1.教材第55页练习十二第2题。

学生独立完成,教师指名学生回答。

2、教材第57页练习十二第9题。

教师指名学生板演,其余同学独立完成,然后集体订正,小组交流遇到的问题。

3、教材第57页练习十二第12题。

(1)小组合作交流讨论工作效率、工作时间和工作总量三者之间的关系。

(2)组织学生汇报,教师根据学生汇报使学生明确:工作总量=工作时间×工作效率。

(3)组织学生完成,全班集体订正。

4教师出示:

a b c s 1 0 8 9

× 9 × 9

s c b a 9 8 0 1

教师:上面算式中,a、b、c、s各代表什么数呢?

组织学生小组讨论,合作交流。(答案见右面竖式)

四、课后小结

通过本节练习课,同学们还有什么疑问?

作业:

一、填一填。

1.小兵有故事书x 本,比张冬多5本,张冬有故事书( )本。

2.小红x 天读课外书a页,平均每天读( )页。

3.每个足球的价格是a元,买6个足球用( )元,付x 元钱可以买( )个足球。

二、说说下面每个式子的意义。

某工厂计划生产洗衣机n台,原计划6天完成,实际比原计划多生产120台。

1.a+120( )

2.a÷b( )

三、用含有字母的式子计算。

1.一个长方形的长a是8.4m,宽6是4m,求它的面积S。

2.一列火车的速度v是180千米/时,行驶的时间t是4.5小时,求行驶的路程s。

板书设计

练习十二

第11题:c=ax a=c-x x =c÷a

第13题:方法一:(a+b)c

方法二:ac+bc

课题: 第五单元:用字母表示数的应用(1) 第 4 课时 总序第 4 个教案

课型: 新授

教学内容:教材P58例4及练习十三第1、2、4、9第题。

教学目标:

知识与技能:

1.使学生认识用字母表示数的意义和作用,能用字母表示数。

2.使学生在具体情境中感受用字母表示数的必要性,向学生渗透符号化思想。

过程与方法:经历用字母表示数来解决实际问题的过程,掌握用字母表示数量关系的方法。

情感、态度与价值观:在学习活动中,感受生活中处处都有数学,体验数学知识的应用价值,培养学生解决实际问题的能力,增强学习的信心。

教学重点:能熟练地用字母表示简单数量关系,解决实际问题。

教学难点:理解应用题的意图和解题思路。

教学方法:设置数学问题,引导学生练习。在练习中体验、交流、感悟。

教学准备:多媒体。

教学过程

一、谈话引入

师:告诉同学们一个秘密,再过几天老师的生日就要到了。同学们,你们觉得老师有多大了?

学生发言,猜一猜老师的年龄。

师:你们已经猜了老师的年龄,现在,让我来猜猜大家的年龄吧。(11岁)老师告诉你一条重要的信息。(出示老师比同学大22岁)你们说我几岁了?你是怎样想的?(板书:学生的岁数:11岁 老师的岁数:11+22)

二、探究新知

(一)用含有字母的式子表示加减关系。

1.师:现在让我们进入时空隧道,回忆过去,展望未来。

想一想,当同学们1岁时,老师几岁?你是怎么知道的?

当同学们2岁时,老师几岁?你是怎么想的?

2.师:还可以说下去吗?想想当你几岁时,老师几岁,用一个算式表示。在纸上写写看。(一生板演)

3.师:感觉怎样?还能写出更多的算式吗?能把你写的算式跟同学们交流一下吗?

学生发言,说说自己的算式与感想。

师:看来,像这样的式子还能写很多。咦,那你能用一个式子就把同学们的岁数、老师的岁数和两个岁数之间的关系简单明了地表示出来吗?

4.学生先独立尝试,然后四人小组交流。

5.汇报、交流、评价。

师:这么多算式,你最欣赏哪一个?说说理由是什么。

6.优化。A A+22表示什么?还表示什么?

7.预设:B B+22 X X +22这三个式子有什么相同的地方?(A、B、X 都是表示不确定的数,A+22 B+22 X+22不仅表示老师的年龄,还表示老师比同学大22岁这个关系)

8.师:这些算式真的可以表示老师任何一年的年龄吗?让我们来试试。

9.想一想,当A=1时,表示同学几岁,老师几岁?

当A=33时,表示同学几岁,老师几岁?

10.师:这些算式既表示出了老师和学生岁数之间的关系,又表示出了老师的岁数。那么,当老师a岁时,同学们几岁?

11.师:用a表示自己的岁数,那么你最喜欢的人的岁数怎么表示?试试看。(解读一下自己写的式子)

(二)教学教材第58页例4。

1.出示教材第58页例4。

2.通过阅读例4可知:一共有果汁1200 g,倒了3小杯,每小杯的容量用xg表示,还剩下多少克?

一小杯的容量是x g,那3小杯的容量是3x g,还剩下多少克呢?

列出式子:1200-3x 。(学生齐答,教师板书)

3当x 等于200时,还剩下:1200-3×200= 600(克)。

4.x 最大可以是多少?

组织学生分小组进行讨论,得出结论后派出代表做课堂汇报。

已知总量是1200g,倒完3小杯后,还有剩余,那意味着1200 - 3x会大于O,得出结论x小于400。(板书)

5.想一想:式子中的字母可以表示哪些数?

学生思考,小组交流,指名学生回答。

6.提问:解决上面的例题需要注意什么?

要注意总量和已使用的量的关系,理解题目的意思,才能正确列出算式。

7.你还能根据题目的信息提出哪些问题?小组交流一下,收集问题并解答。

学生独立思考,并进行小组合作。

三、巩固练习

1.完成教材第58页“做一做”。

先让学生独立思考,并汇报结果,最后集体订正。

(1)120+lOa。

(2)把a=25代入120+lOa中,得120+10×25=370(kg)。所以当a=25时,商店一共有370kg苹果。

2.完成教材第58页“做一做”的第2题。

先由学生独立解决,再指名回答,最后集体订正。

(1) 96-12b。

(2)把b=5代入到96-12b中,得96-12×5=36(吨),所以当b等于5时,仓库里剩下的货物有3b吨。

(3)这里的b可以表示1,2,3,4,5,6,7,8。

3.完成教材第60页练习十三第1题

学生理解题意,再独立完成,并在小组中交流检查。

4.完成教材第61页练习十三第9题。

(1)指名学生读题,理解题意,引导学生区分“离开重庆有多远”和“到宜昌还有多元”。

(2)组织学生独立完成,全班集体订正。

四、课堂小结

通过这节课,你有什么新的收获。

作业:教材第60页练习十三第2、4题。

板书设计

用字母表示数的应用

学生的岁数:11岁 老师的岁数:11+22

1200-3x

1200- 3x 会大于O,得出结论x 小于400。

当x 等于200时,还剩下:1200-3×200= 600(克)。

课题: 第五单元:用字母表示数的应用(2) 第 5 课时 总序第 5 个教案

课型: 练习

教学内容:教材P59例5及练习十三第5、6、7、8第题。

教学目标:

知识与技能:1.在实际情境中理解用字母表示数的意义,会用含有字母的式子表示复杂数量关系。2.在探索数量关系的过程中,体会用字母表示数的优越性,感受数学的简洁美。3.渗透不完全归纳思想和代数思想,培养符号化意识,提高概括能力。

过程与方法:经历用字母表示数来解决生活中实际问题的过程,掌握用字母表示复杂数量关系的方法。

情感、态度与价值观:在学习活动中,感受生活中处处都有数学,体验数学知识的应用价值,培养学生解决实际问题的能力,增强学习的信心。

教学重点:理解用字母表示数的意义,会用含有字母的式子表示复杂数量关系。

教学难点:用字母表示应用题中的复杂数量关系。

教学方法:设置数学问题,引导学生练习。在练习中体验、交流、感悟。

教学准备:多媒体、小棒。

教学过程

一、游戏导入

抓小棒的游戏。

1.明确操作要求:同学们每次抓的小棒根数是老师抓的3倍。

2.教师分别抓1根、3根、7根小棒,学生抓出相应的根数。

在此基础上提问:怎样求出你应抓的根数?

3.教师抓一大把时,问:你和你的同桌一共抓几根呢?

当a=60时,你们小组的同学一共抓几根?当a等于200时呢?

二、探索新知

教材第59页例5。

1.摆三角形所用小棒的根数。

(1)教师:摆1个三角形需要几根小棒?摆2个、3个、4个呢?

指名学生回答:摆1个三角形需要3根小棒,摆2个需要6根,摆3个需要9根……

教师:你能发现什么规律?

小组讨论并派出代表发言。

引导学生得出所用的小棒的根数是摆的三角形个数的3倍。

(2)教师:假如摆x 个三角形,需要几根小捧?

学生:3x 根。

教师:x 表示什么?这儿的x可以是哪些数?

学生小组交流,教师指名汇报。

(3)教师:当x 等于6时,就是摆了几个三角形?需要几根小棒?当x 等于20时呢?

学生小组讨论交流。

2.摆正方形所用小棒的根数。

(1)教师:摆1个正方形需要几根小棒?摆2个、3个、4个呢?如果摆x个正方形需要几根小棒?这儿的x 表示什么?

指名学生回答:摆1个正方形需要4根小棒,摆2个需要8根,摆3个需要12根……

提问:你能发现什么规律?

小组讨论并派出代表发言。

引导学生得出所用的小棒的根数是摆的正方形个数的4倍。摆x个正方形需要4x 根小棒,这里的x 表示正方形的个数。

(2)教师出示另一个正方形,用x 表示边长,问:这时的x表示什么?分别用字母表示出正方形周长计算公式和面积计算公式。

指名学生汇报,根据学生汇报板书:

正方形的周长计算公式:C= 4x

正方形的面积计算公式:S=x ×X =X 2

经过举例让学生明白字母可以表示不同的数量,所表示的意义也不同。

3.摆正方形和三角形共用小棒的根数。

(1)教师:已知摆一个三角形所需的小棒是3根,摆一个正方形所需的是4根,那摆一个正方形和一个三角形需要多少根小棒?

学生齐答。

(2)教师:那摆2个、3个、4个呢?甚至x 个呢?

引导:摆x 个三角形和正方形的图形,所用小棒的根数应是摆x 个三角形和x 个正方形所用根数的和。

学生独立列式,指名口答。

教师板书:3x +4x =(3+4)x =7x

引导学生发现:这是运用了乘法分配律。

求x 等于8时,一共用了多少根小棒?

学生自主解题,汇报:当x =8时,7x =7×8=56(根),一共用了56根小棒。

4.教师归纳总结:同一个字母可以表示不同的数量,并且表示的意义不同。同一个字母表示相同的意义、相同的数量时,可运用乘法分配律进行运算。

三、巩固练习

1.完成教材第59页的“做一做”。

找两名学生板演,其他学生在稿纸上完成,然后集体订正。

(1)220x +120x = (220+120)x =340x (千米),所以经过z小时,动车和普通列车一共行了340千米。

(2)220x -120x =lOOx (千米),所以经过x小时,动车比普通列车多行了lOOx千米。

2.完成教材第61页练习十三第6题。

学生读题,理解题意,再独立练习,通过小组交流检验答案。

四、课后小结

通过这节课,你有什么新的收获?

作业:教材第61页练习十三第5、7、8题。

板书设计

用字母表示数的应用

正方形的周长计算公式:C= 4x 3x +4x =(3+4)x =7x

正方形的面积计算公式:S=x ×X =X 2 乘法分配律

课题: 第五单元: 练习十三 第 6 课时 总序第 6 个教案

课型: 练习

教学内容:教材P60~61练习练习十三第2、10、11题。

教学目标:

知识与技能:通过练习会熟练地用含有字母的式子表示数量及数量关系。能根据字母所取的值,求出含有字母的式子的值。

过程与方法:结合具体情境,经历用字母表示数和求值的练习过程,培养学生抽象概括的思维能力。

情感、态度与价值观:在练习活动中,体会生活中处处都有数学及数学知识的应用价值,培养学生解决实际问题的能力,增强学好数学的信心。

教学重点:掌握用含字母的式子表示数量关系;根据字母所取的值,求出含有字母的式子的值。

教学难点:理解用含有字母的式子表示数量及数量关系,培养学生抽象概括的思维能力。

教学方法:创设情境、合作交流、应用与反思。

教学准备:多媒体、练习纸。

教学过程

一、基础练习

1.我能填:

(1)7·a·6=□·(□·□) 2x +6x =(□+□)·x

(2)a+a=( ) a×a=( ) 当a=5时,2a=( ),a2=( )

(3)一个长方形,长a米,宽b米,面积S=( ),周长C=( )

2.我会选:水果店购进一批水果,皇帝柑有x箱,每箱重10千克,香蕉共有6千克。说出下列式子表示的意义:

(l)lOx (2)10x +b (3)lOx -b

3.小结并板书课题。

二、综合训练

1.创设情境:现在我们就一起坐车去游玩吧。

汽车每小时行60 km,行了t小时,一共行了( )千米。

提问并用字母表示出公式。

2.第一站:

A.购买门票。

(1)提问:在付款前先要知道哪些条件?(单价a、数量x)

付款的钱叫什么?(总价c)

你能用文字说一说这三个数量之间有什么关系吗?再用字母表示出来。

(2)从这里选一个公式来解决下面的问题:

如果每张门票55元,220元可以买几张票?

B.过关明理:(理解式子表示的意义)

(1)百万葵园一张儿童票是b元,成人票比儿童票贵15元。b+15表示什么?(成人票的价格)

(2)我班共有48名师生购票进园,教师有(48 -c)名,这里的c表示什么?

(学生的人数)

(3)师生们排队进园,平均分成了x 组,每组12人。12x 表示什么?

(进园的总人数)

C葵花精灵考考你:(同式异义)

我们栽种了20棵葵花,平均栽成了a行,每行栽(20÷a)棵。

一袋葵花种子a元,20元可以买(20÷a)袋。

学生填空,再用自己的话说一说上面式子表示的含义。

小结:相同的字母或相同的含有字母的式子,在不同的题目中所表示的意义不一样。

即时练习:教材第60页练习十三第3题。

像这样用你自己的话说一说下面式子的含义。

20+a 20-a 20a

3.第二站:

甲导游:我每天接待游客a人。乙导游:我每天接待游客b人。

(1)他们每天共接待游客 人,30天共接待游客 人。

(2)当a=580,b=620时,用第(1)题中的式子计算他们30天的总接待人数。

学生先独立完成,然后小组交流、汇报。

4.第三站:

(l)一本亚运宣传册有a页,小华每天看8页,看了6天。用式子表示还没看的页数。

(2)这本书如果有94页,张华看了7天。用上面的式子求还没看的页数。

小结:根据题意和字母所取的值,可以求出含有字母的式子的值。

5.第四站:

请同学们一起观察此表:说一说什么是工作效率、工作时间和工作总量。

(1)请同学们完成此表:(见板书)

(2)机器包装的速度更快,一台机器每分钟包装水果50盒,请你利用表中的公式计算一台机器1小时包装多少盒。

交流、汇报。

三、拓展提高

1.依次出现以下正方形。(教材第61页第10题)

课题: 第五单元:简易方程—方程的意义

教学内容:教材P62~63及练习十四第1、2、3题。

教学目标:

知识与技能:使学生理解和掌握等式与方程的意义,明确方程与等式的关系。

过程与方法:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。

情感、态度与价值观:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。

教学重点:理解和掌握方程的意义。

教学难点:弄清方程和等式的异同。

教学方法:观察、分析、分类、抽象、概括和交流

教学准备:多媒体,天平。

教学过程

一、情境导入

1.创设情境:同学们,你们听过《曹冲称象》的故事吗?

教师简单介绍《曹冲称象的故事》

2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?

(让大象和石头的重量相等,再称石头的重量。)

3.是的。那么你们知道吗,在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。

二、互动新授

1.出示天平:

让学生说一说对天平有哪些了解?

让学生自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等。

教师做补充:天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。

2.合作探究。

(1)在天平的右边放一个1009的砝码,怎样才能让天平平衡呢?

让学生自主思考、交流操作,得出:在天平的左边放2个509的砝码就可以保持平衡。

用算式表示:50+50=100。

让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)

(2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。

引导学生通过观察发现:现在天平平衡,说明空杯子重100g。

质疑:如果我往杯子里倒些水,观察天平现在的情况。

(在空杯里加一杯水后天平不平衡了。)

一杯水的重量是多少,怎样表示?

引导学生思考:你们知道一杯水有多重吗?(不知道)

如果要你现在表示这杯水有多重,你有办法吗?

学生思考,小组讨论得出:一杯水的重量一水的重量十杯子的重量。

追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?

学生汇报:lOO+x (师板书)

(3)再次让学生观察现在的天平(天平右边放10g砝码),发现了什么?

(天平两边不平衡)

哪边重一些呢?你们能用数学算式来表示吗?

学生回答:lOO+x >100。

怎样让天平两边平衡呢?(加砝码)

教师在右边依次加一个100g的砝码,加两个100g的砝码让学生观察,并说一说天平的情况。

学生分组讨论,教师巡视指导

汇报时引导学生用式子表示:lOO+x >200 lOO+x <300。

并引导学生说明这杯水的重量大于200g,小于300g。

让学生继续操作,怎样才能使天平平衡呢?

引导学生把右边的砝码换成2509,使天平左右两边平衡。这说明了什么?

(一杯水的重量等于250g)

(4)你们能用数学算式来表示这天平的状况吗?

学生自主思考,再全班交流汇报:lOO+x =250(师板书)

引导学生观察比较这三个算式有什么不同?

lOO+x >200 lOO+x <300 lOO+x =250

小结:前面两个算式两边不相等,后面一个算式两边是相等的。

师引导:像这样两边相等的算式我们把它叫做等式。(板书:等式)

(5)让学生比较50+50=100与lOO+x =250两个等式,有什么不同?

学生自主思考,并交流得出:第一个等式没有未知数x ,第二个等式含有未知数x 。

教师小结:像lOO+x =250这样的含有未知数的等式,称为方程。(板书:方程)

(6)引导学生思考:是不是所有的等式都是方程?(不是。)

那么,方程有哪些特点?

归纳小结:方程的特点:是一个等式,且含有未知数。

三、巩固拓展

1.让学生仿照课本情境图,自己试着写一些方程。

注意指导学生:方程一定是等式,并含有未知数。

2.完成教材第63页“做一做”第1题。

先让学生说一说什么样的式子是方程,再自主判断,最后集体交流。

3.完成教材第63页“做一做”第2题。先说一说图意,再写方程表示数量关系。

如:第一幅图天平的左边有两个重量是x g的球,右边是一个重50g的砝码,也就是两个x g的球的重量是50g,列方法表示为2x =50。第二幅图是一条线段分成了两部分,一部分是x ,一部分是73,这两部分总数是166,即x +73=166。

四、课堂小结

师:这节课你学会了什么?有哪些收获?

引导总结:1.像lOO+x =250这样含有未知数的等式叫做方程。

2.方程有两个重要条件:一个是等式,一个是含有未知数。

3.方程一定是等式,等式不一定全都是方程。

作业:教材第66页练习十四第1、2、3题。

板书设计:

方程的意义

不平衡 平衡

lOO+x >200 lOO+x =250

lOO+x <300

像lOO+x =250这样的含有未知数的等式叫做方程。

课题: 第五单元:简易方程—等式的性质 第 2 课时 总序第 8 个教案

课型: 新授

教学内容:教材P64~65及练习十四第4、5题。

教学目标:

知识与技能:通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

过程与方法:利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。

情感、态度与价值观:培养学生观察与概括、比较与分析的能力。

教学重点:掌握等式的基本性质。

教学难点:理解并掌握等式的性质,能根据具体情境列出相应的方程。

教学方法:启发式教学;自主探索、观察、归纳、合作学习新知。

教学准备:天平、茶壶、茶杯、墨水、铅笔盒。

教学过程

一、情境导入

1.上节课咱们认识了天平,知道天平的两边重量完全相同时,天平才能保持平衡;并利用天平学会了等式和方程的含义:等号两边完全相等的式子叫等式,含有未知数的等式就是方程。

2.同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)

二、互动新授

1.出示教材第64页情境图1第一个天平图。

让学生仔细观察图,并说一说:通过图你知道了什么?

让学生自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。

引导学生小结:1个茶壶的重量=2个茶杯的重量。

追问:如果设一个茶壶的重量是n克,1个茶杯的重量是b克,能用式子表示吗?

让学生尝试写出:a=2b(师板书)

引导学生思考:如果在天平的两边同时各放上一个茶杯,天平会发生什么变化呢?

先让学生猜一猜,学生可能会猜测出天平仍然平衡。再追问:为什么?

学生可能会说:因为两边加上的重量一样多。

教师先进行实际操作天平验证,让学生观察。再演示这一过程,并明确:两边仍然相等。

小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。

让学生尝试用字母表示这个式子:a+b=2b+b(师板书)

提问:如果两边各放上2个茶杯,还保持平衡吗?两边各放同样的一把茶壶呢?

学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2b a+a=2b+a

2.出示教材第64页图2的第一个天平图。

让学生观察现在的天平是什么样的?(平衡)

追问:如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?生尝试写出:a+b=4b

再问:如果把两边都拿掉1个花瓶,天平还平衡吗?先让学生猜一猜,再演示。

学生回答:平衡。让学生尝试用等式表示:a+b-b=4b-b

从图上你能知道什么?(出示教材第64页图2第二个天平图)

(1个花盆和3个花瓶同样重。)

3.通过这几个实验,你发现了什么?

引导小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。天平的两边同时加上或减去同样的数量,天平仍然平衡。

你能用一句话来表示你的发现吗?

引导学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

4.引导学生通过假设具体的数进行比较验证。如:假设一个花瓶1千克,那么4个花瓶共4千克;一个花盆3千克,再加一个花瓶也是4千克。把两边同时减去一个花瓶也就是减去1千克,那么两边都剩下3千克。

5.猜猜:除了这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?

让学生猜测。这里对学生可能有些难度,有些学生的猜测脱离不了等式的性质1。

如:学生猜测天平的两边同时放2个、3个杯子;同时减去一把茶壶等。这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?

6.出示教材第65页图1的第一个天平图,让学生观察并说明。

(一瓶墨水的重量=一盒铅笔盒的重量)

引导学生用a表示墨水的重量,用6表示铅笔盒的重量,写出等式:a=b。

猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?

学生猜测后,教师进行实际天平操作,验证学生的猜测。

多媒体演示变化过程,并引导学生用等式表示:2a=2b。

如果把天平的两边物品的数量分别扩大到原来的3倍、4倍呢?(仍然保持平衡)

7.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。

(2个排球的质量=6个皮球的质量)

引导学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。

质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?

学生猜测:平衡。

教师演示,并引导学生用等式a=3b表示。

8.通过刚才的试验,你发现了什么?

发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。

你能用一句话总结一下等式的这个性质吗?

归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。

9.为什么等式两边不能除以O?学生交流,汇报:O不能做除数。

三、巩固拓展

利用等式的性质填空

1.如果2x -5=9,那么2x =9+( )

2.如果5=10+x ,那么5x -( )=10

3.如果3x =7,那么6x =( )

4.如果5x =15,那么x =( )

先让学生回忆等式的性质,再自主完成填空。

四、课堂小结

这节课你学会了什么知识?有哪些收获?(引导总结等式的性质)

作业:教材第66页练习十四第4、5题。

板书设计: 等式的性质

a=2b a+b=2b+b a=b 2a=2b

a+b=4b a+b-b=4b-b 2a=6b a=3b

等式两边加上或减去同一个数,左右两边仍然相等。

等式两边乘同一个数,或除以同一个不为O的数,左右两边仍然相等。

课题: 第五单元:简易方程—解方程(1) 第 3 课时 总序第 9 个教案

课型: 新授

教学内容:教材P67~68例1、例2、例3及练习十五第1、2、7题。

教学目标:

知识与技能:使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

过程与方法:利用等式的性质解简易方程。

情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

教学重点:理解“方程的解”和“解方程”之间的联系和区别。

教学难点:理解形如a±x =b的方程原理,掌握正确的解方程格式及检验方法。

教学方法:创设情境;观察、猜想、验证.

教学准备:多媒体。

教学过程

一、情境导入

谈话:同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球呢?(学生思考后会说,可以是任意数。)

教师继续通过多媒体补充条件,并出示教材第67页例1情境图。

问:从图上你知道了哪些信息?

引导学生看图回答:盒子里的球和外面的3个球,一共是9个。

并用等式表示:x +3=9(教师板书)

二、互动新授

1.先让学生回忆等式的性质,再思考用等式的性质来求出x 的值。

学生思考、交流,并尝试说一说自己的想法。

2.教师通过天平帮助学生理解。

出示教材第67页第一个天平图,让学生观察并说一说。

长方体盒子代表未知的x个球,每个小正方体代表一个球。则天平左边是x +3个球,右边是9个球,天平平衡,也就是列式:x +3=9。

观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?

(右边也要拿掉3个球。)

追问:怎样用算式表示?学生交流,汇报:x +3-3=9-3

x=6

质疑:为什么两边都要减3呢?你是根据什么来求的?

(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。)

你们的想法对吗?出示第3个天平图,证实学生的想法是对的。

3.师小结:刚才我们计算出的x=6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解 解方程)

4.引导:谁来说一说,方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x 的值是方程的解;求解的过程就是解方程。

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

5.验算:x =6是不是正确答案呢?我们怎么来检验一下?

引导学生自主思考,并在小组内交流自己的想法。

通过学生的回答小结:可以把x=6的值代入方程的左边算一算,看看是不是等于方程的右边。

即:方程左边=x +3

=6+8

=9

=方程右边

让学生尝试验算,并注意指导书写。

6.出示教材第68页例2情境图。

让学生观察图,理解图意并用等式表示出来:3x =18

引导学生:通过刚才解方程的经验尝试解决这个题。

学生自主尝试解决,教师巡视指导。

汇报解题过程:等式的两边同时除以3,解得x =6。

根据学生的回答,师板书:3x =18

3x ÷3=18÷3

x =6

质疑:你是根据什么来解答的?

引导小结:根据等式的性质:等式两边同时乘或除以一个不为O的数,左右两边仍然相等。

让学生尝试检验计算结果是否正确。

7.出示教材第68页例3,并让学生尝试解答。

由于此题是“a-x ”类型,有些学生在做题时可能会出现困难,不知道怎么做。有些学生可能会在等号两边同时加上“x ”,但x 在等号的右边,不会继续做了。

教师可以引导学生思考,根据等式的性质,只要等式的两边同时加或减相等的数或式子,左右两边仍然相等,那么我们可以同时加上“x ”。

通过计算让学生发现,等号左边只剩下“20”,而右边是“9+x ”。

继续引导学生思考:20和9+x 相等,可以把它们的位置交换,继续解题。学生继续完成答题,汇报。根据汇报板书:

20-x =9 请学生自主尝试检验:方程左边=20-x

20-x +x =9+x =20-11

20=9+x =9

9+x =20 =方程右边

9+x -9=20-9

x =ll

8.讨论:解方程需要注意什么?让学生自主说一说,再汇报。

小结:根据等式的性质来解方程,解方程时要先写“解”,等号要对齐,解出结果后要检验。

三、巩固拓展

1.完成教材第67页“做一做”第1、2题。

2.完成教材第68页“做一做”第1、2题。学生自主计算解答,并集体订正答案。

四、课堂小结。师:这节课你学会了什么知识?有哪些收获?

引导总结:1.解方程时是根据等式的性质来解。2.使方程左右两边相等的未知数的值,叫做方程的解。3.求方程解的过程叫做解方程。

作业:教材第70~71页练习十五第1、2、7题。

板书设计:

解方程(1)

例1: 例2: 例3:

x -3=9 方程左边=x +3 3x =18 20 - x =9

x +3-3=9-3 =6+3 3x ÷3=18÷3 20- x + x =9+x

x =6 =9 x=6 20=9+x

=方程右边 9+x =20

所以,x =6是方程的解 9+x -9=20-9

x =ll

使方程左右两边相等的未知数的值,叫做方程的解。求方程解的过程叫做解方程。