Skip to main content
头部广告图片
  考试学习首页 > 高考

高三数学题

2023-04-23 浏览:

若(2a-b)垂直于b,则有(2a-b)*b=0
2ab-b²=0
2(2×3+1×x)-(3²+x²)=0
12+2x-9-x²=0
x²-2x-3=0
(x-3)(x+1)=0
解得x=3或x=-1

(x+y)(y+z)
=xy+xz+y^2+yz
=y(x+y+z)+xz

xyz(x+y+z)=1
y(x+y+z)=1/xz

xz>0,1/xz>0

(x+y)(y+z)
=xz+1/xz>=2√(xz*1/xz)=2
(x+y)(y+z)的最小值为2

双曲线 x^2/9-y^2/16=1,
右焦点F(5.0),A1(-3,0),A2(3,0)
设P(x,y) M (9/5,m),N(9/5,n)
∵P,A1,M三点共线,
∴m/(9/5+3)=y/(x+3)
∴m=y(9/5+3)/(x+3)
∵P,A2,N三点共线,
∴n/(9/5-3)=y/(x-3)
∴n=y(9/5-3)/(x-3)
∵x^2/9-y^2/16=1
∴(x^2-9)/9=y^2/16
∴y^2/(x^2-9)=16/9
FM向量=(9/5-5,y(9/5+3)/(x+3))
FN向量=(9/5-5,y(9/5-3)/(x-3))
FM向量*FN向量
=(9/5-5)^2+y^2((9/5)^2-9)/(x^2-9)
=(9/5-5)^2+16((9/5)^2-9)/9

=16^2/5^2+16(9/25-1)=0
FM向量*FN向量=0

相关文章